CYBERSECURITY IN CONSTRUCTION & REAL ESTATE

HOW TO MITIGATE RISKS FROM RANSOMWARE, SOCIAL ENGINEERING, AND BEYOND.

WEBINAR: November 12, 2024

Today's Presenters

Jennifer French, CPA

Partner, Construction & Real Estate Team Leader

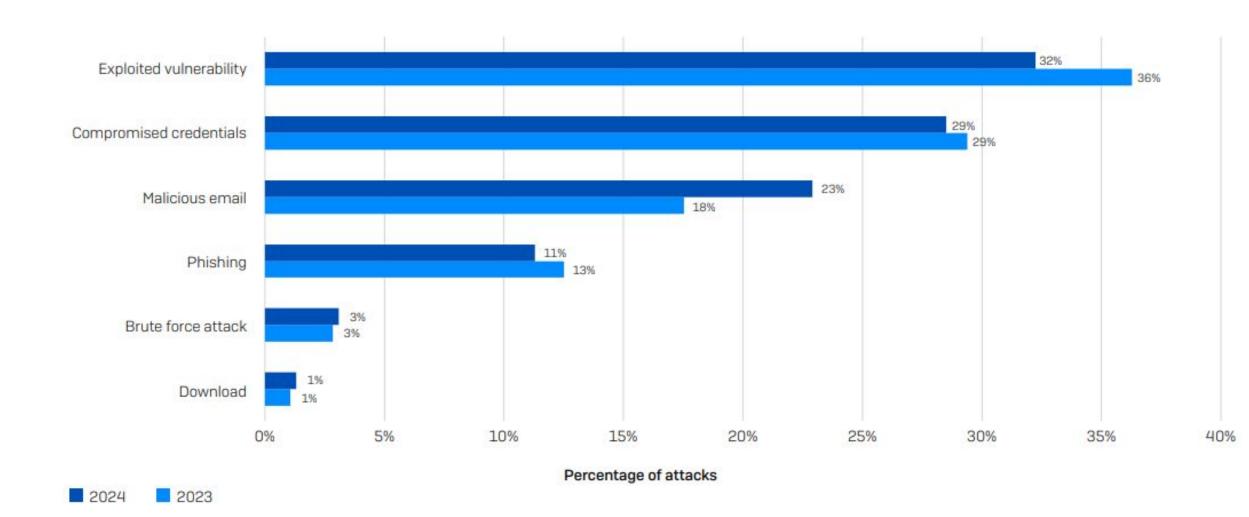
Antonina K. McAvoy, CISA, CISM, QSA, PCIP

Partner, Cybersecurity & Risk Advisory Services

2024 Cyber Threat Landscape: Navigating Risks

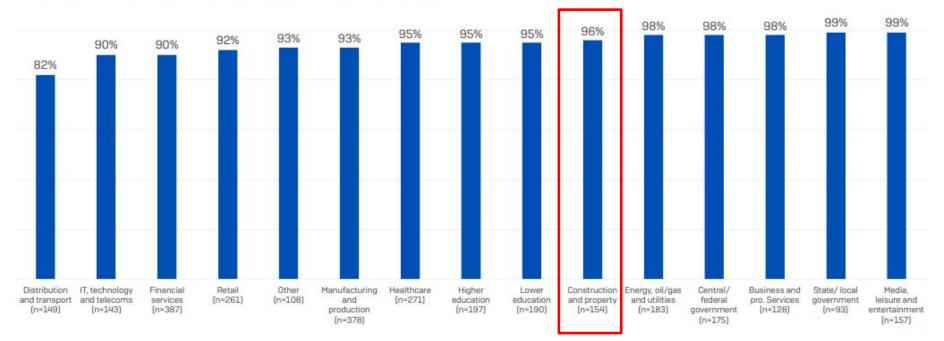
Construction and real estate companies face diverse cyber threats in 2024, necessitating proactive defense measures.

- Ransomware: Increasing attacks disrupt services and extort data.
- Phishing and Social Engineering: Target employees for data theft.
- Supply Chain Vulnerabilities: Increased risks from interconnected networks.
- Emerging Technologies Threats: Al and quantum computing vulnerabilities emerge.


Spotlight – Latest Cyber Attacks Capturing Headlines:

Ransomware Rampage

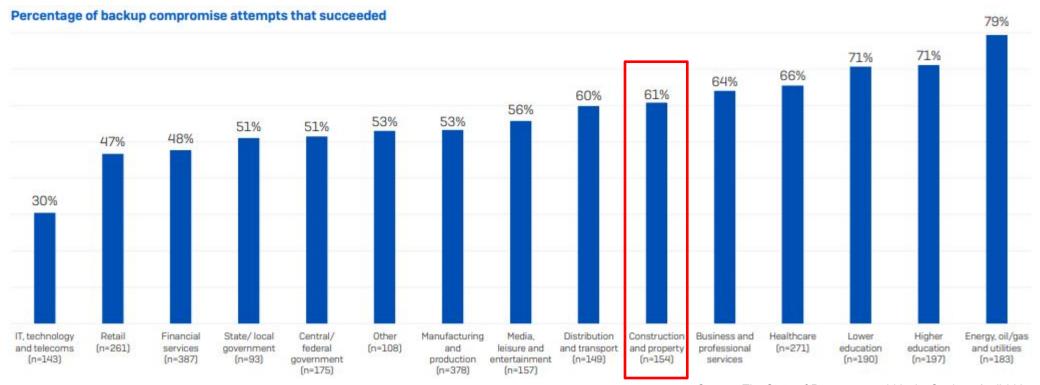
Root Causes of Ransomware Attacks (2023 – 2024)


Data Recovery and Propensity to Pay the Ransom

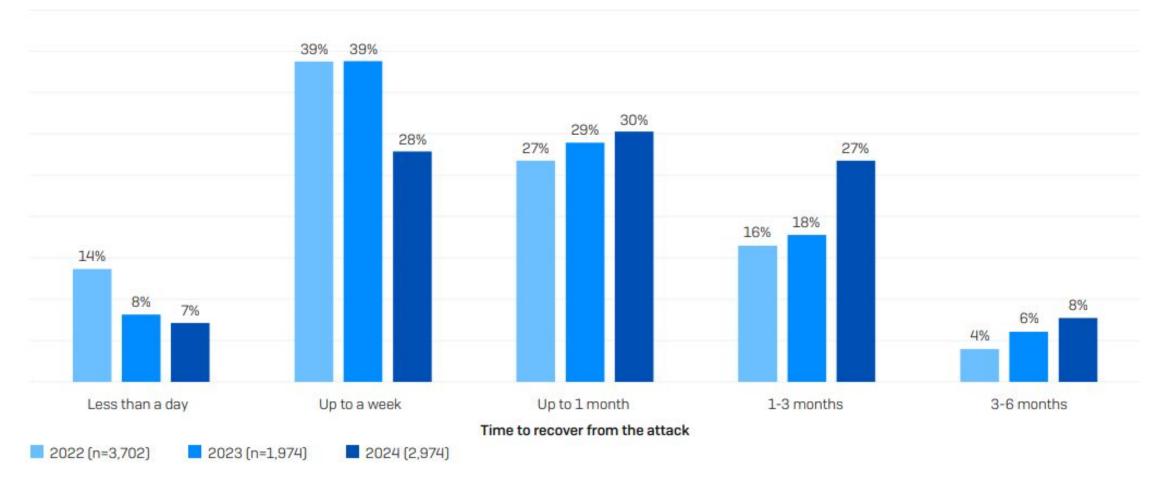
In ransomware attacks, organizations have two main options for recovering encrypted data: restoring from backups or paying the ransom. Compromised backups limit recovery options, increasing pressure to pay.

- 34% paid ransom, 75% relied on backups.
- Backup usage rose from 63% in 2022 to 75% in 2023.

Spotlight (construction): 96% retrieved encrypted data


Percentage of attacks where adversaries attempted to compromise backups

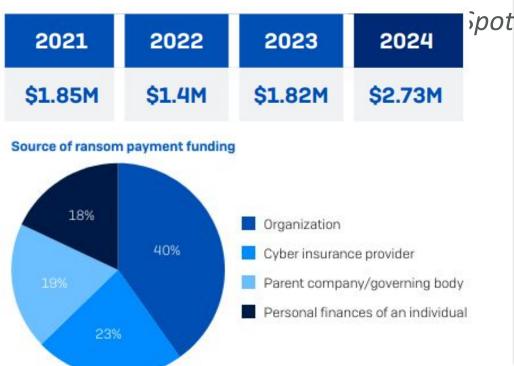
Success Rate of Backup Compromise Attempts


Across all sectors, an average of 57% of backup compromise attempts were successful and adversaries were able to impact the ransomware recovery operations of over half their victims.

Spotlight: Ensure strong backup protection in place and sufficient technology to detect and stop an attempted compromise before the attackers succeed.

Recovery Time

The time taken to recover from a ransomware attack is getting steadily longer. The slowdown may indicate more complex attacks, requiring extensive recovery, and a lack of preparation.



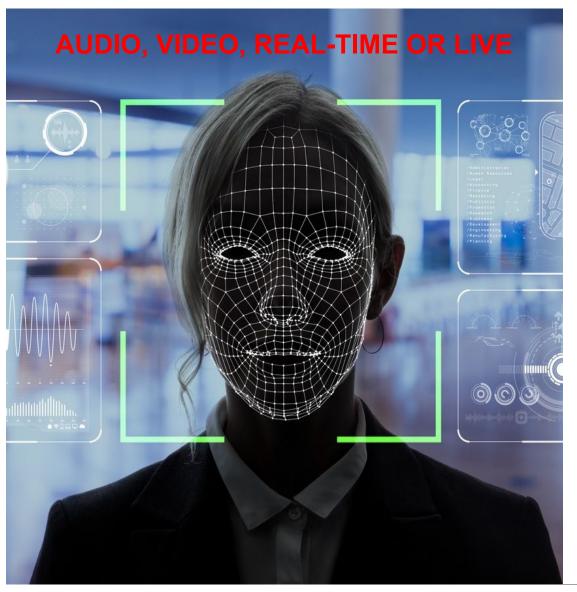
Ransom Payment by Industry

Organizations with backups compromised reported worse outcomes: \$7,460,007 Double initial ransom demands (\$2.3M vs. \$1M median). Nearly double likelihood of paying the ransom (67% vs. 36%). \$6,600,000 \$6,600,000 Eight times higher median overall recovery costs (\$3M vs. \$375K). \$5,852,461 \$5,261,248 \$4,410,000 \$4,402,330 \$4,173,184 \$3,225,093 \$2,992,594 \$3,040,958 \$2,743,732 \$2,540,000 \$2,496,301 \$2,367,061 \$2,229,621 \$2,229,116 \$2,200,000 \$2,000,000 \$2,000,000 \$1,470,000 \$1,200,000 \$1,050,000 \$946,000 \$950,000 \$465,000 \$440,000 and transport leisure and (n=78) and property (n=99) pro. Services services government and utilities education government education (n=90)(n=86) (n=92) (n=43) entertainment production (n=49)(n=99) (n=81) [n=157] Median Mean

Recovery Costs

Ransom payments are just one element of recovery costs when dealing with ransomware events. Excluding any ransoms paid, in 2024, organizations reported a mean cost to recover from a ransomware attack of \$2.73M, an increase of almost \$1M from the \$1.82M reported in 2023 (downtime, people time, device cost, network cost, lost opportunity, etc.).

Spotlight: A look back at four cyber attacks.


City	Demand	Method	Paid	Estimated Costs
Atlanta, GA	\$51,000	Bitcoin	No	\$12 - \$17 million
Baltimore, MD	\$75,000	Bitcoin	No	\$10 - \$18 million
Lake City, FL	\$490,421	Bitcoin	Yes	\$10,000
Denver, CO	\$51,000	Bitcoin	No	\$1.5 million

Source: The State of Ransomware 2024 by Sophos, April 2024.

Phishing & Social Engineering

Evolution of Threats: Deepfake Phishing

Risks Posed by Deepfake:

- Deepfakes can mimic the voices and appearances of trusted individuals, making it challenging to discern authentic communication from fraudulent ones.
- Increased risk of identity theft, financial fraud, and reputational damage due to the proliferation of deepfake content.

Detecting Deepfakes

- Implementing robust detection mechanisms is crucial to identify and mitigate the threat posed by deep-fakes.
- Utilize AI-powered tools specifically designed to analyze audio and video content for signs of manipulation or inconsistency.

Beware of Smishing

Protect yourself from smishing attacks by staying alert and cautious when receiving unexpected text messages. Your vigilance is your best defense against cyber threats.

- Deceptive Tactics: Attackers impersonate trusted entities, such as banks or government agencies, to deceive recipients.
- Urgency: Messages create a sense of urgency, urging recipients to take immediate action.
- Risk: Clicking on links or providing personal information can lead to identity theft, financial loss, or malware infections.

Supply Chain Vulnerabilities

Third Party Software Vulnerabilities

Third party software developed and maintained by external vendors.

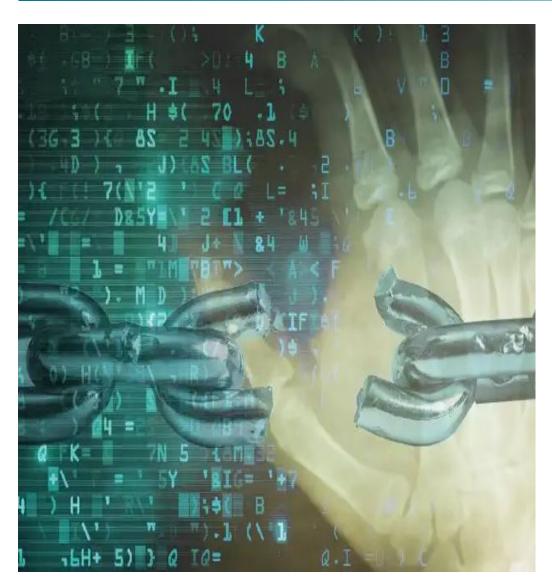
Risks:

- Vulnerabilities in third-party software can be exploited by cybercriminals to gain unauthorized access to networks, systems, and sensitive data.
- Common vulnerabilities include unpatched software, insecure configurations, and inadequate authentication mechanisms.

Protective Measures:

- Vendor risk assessments
- Continuous monitoring
- Contractual agreements
- Patch management
- Secure integration practices

Contracts: Navigating IT Considerations for Success



Vendor contracts must meet security and privacy standards for third parties handling confidential data or critical services.

Management considerations for contract inclusion:

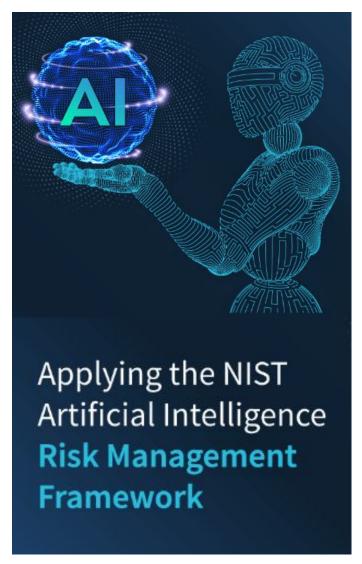
- Contracts ensure third-party responsibility for institution's data security;
- Third-party security controls validated by independent party;
- Recourse defined for security requirement breaches;
- Responsibilities outlined for incident response timing;
- Data return/destruction terms upon contract end;
- Formal device management responsibilities documented;
- Geographic limits on data storage/transmission specified.

Inadequate Security Practices Among Suppliers

Suppliers or key vendors may have varying security which can impact overall supply chain security.

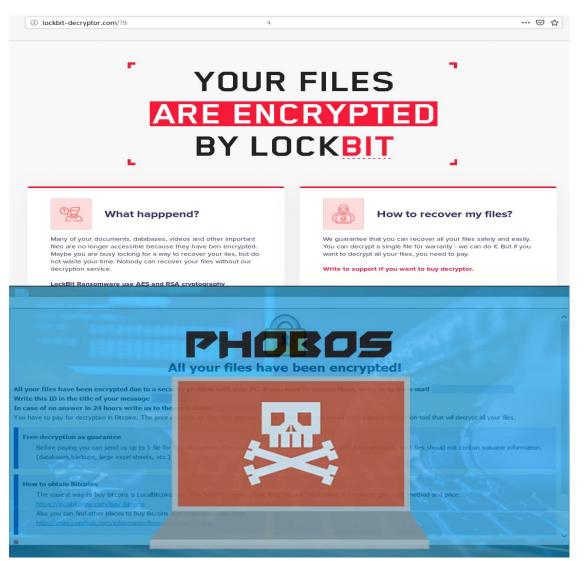
Risks:

 Weak passwords, lack of encryption, insufficient backup frequency or backup restore testing, backup replication, and other security gaps can leave systems vulnerable to attacks.


Protective Measures:

- Establish clear standards for suppliers
- Conduct assessments
- Implement appropriate controls

Emerging Technologies & Threats



Al: Cybersecurity's Double-Edged Sword

- Adversarial Attacks: Threat actors exploit AI vulnerabilities, compromising system integrity.
- Bias and Discrimination: Al algorithms perpetuate biases, leading to unfair outcomes.
- Privacy Concerns: Al systems access vast data, raising privacy infringement risks.
- Over-reliance on Automation: Blind reliance on AI can lead to neglect of manual oversight.
- Lack of Explainability: Al's black-box nature hinders understanding and accountability.
- Cybersecurity Arms Race: Rapid AI advancement fuels a cycle of innovation between defenders and attackers.
- Regulatory Compliance: Compliance complexities arise, requiring alignment with NIST AI framework guidelines for ethical and responsible AI use.

LockBit vs. Phobos: Ransomware Showdown

Al is redefining ransomware phishing tactics.

Prevalence of Phishing

 Phishing, like that employed by LockBit and Phobos ransomware, is widespread due to exploiting human vulnerabilities.

Evolution of Phishing

 Phishing emails are becoming increasingly difficult to detect, aided by generative artificial intelligence (AI).

Generative AI's Role

 Generative AI contributes to creating highly convincing phishing emails.

What's At Stake?

What's at Stake: Common Data Types

Protecting sensitive data is crucial for the construction industry, especially as companies handle increasing amounts of digital information and client interactions.

- PII (Personally Identifiable Information): Protects sensitive data such as names, addresses, and SSNs of employees, clients, and subcontractors; requires stringent security measures.
- PHI (Personal Health Information): Safeguards health information of workers, ensuring confidentiality in health records and wellness programs.
- FTI (Federal Tax Information): Requires compliance to secure sensitive tax-related data from employees and subcontractors.
- **CJIS:** Ensures the security of criminal background checks and information for workers on government projects.
- **FERPA:** Relevant when working on educational construction projects, protecting student records.
- **PCI:** Establishes standards for securing payment card data when handling client payments for projects or services.
- CMMC (Cybersecurity Maturity Model Certification): Mandatory for contractors working with the Department of Defense, ensuring compliance with specific cybersecurity practices to protect Controlled Unclassified Information (CUI).
- OSHA (Occupational Safety and Health Administration): Although focused on worker safety, OSHA compliance increasingly involves

protectin _i _{Assets}							Data Attributes							Data Classification Attributes			
GDPR (Ge		# Functional	l Business Process		Application or System		Does the system contain? (Y/N)								ts,		
requiring	# Fur						Personally Identifiable Information (PII) data elements?	Protected Health Information (PHI) data elements?	Information (FTI)	Criminal Justice Information System (CJIS) data elements?		Payment Card Industry (PCI) data elements?	Please list all sensitive data elements.	Data Protection	Backup Frequency	Data	
	1							29 02	22 S								8
	2																i .

Fortifying Your Digital Fortress

Unleashing Defense Strategies

Ransomware Defense Best Practices for Construction:

- Utilize Security Tools: Cover common attack vectors like phishing and malware.
- Endpoint Protection: Safeguard devices with anti-exploit capabilities.
- Zero Trust Access: Prevent unauthorized credential use.

Adapt with Technology:

- Deploy adaptive technologies to respond to attacks.
- Disrupt adversaries and buy time to protect critical systems

Ensure Continuous Detection:

Establish 24/7 threat detection with Managed Detection and Response (MDR) services.

Prepare Against Attacks:

- Regularly backup data and practice recovery procedures.
- Maintain incident response and business continuity plans.
- Train staff on cybersecurity best practices and conduct risk assessments.

Maintain Hygiene:

Regularly patch systems and review security configurations.

www.pbmares.com

MARYLAND – Rockville NORTH CAROLINA – Morehead City • New Bern • Wilmington VIRGINIA – Fairfax • Fredericksburg • Harrisonburg • Newport News • Norfolk • Richmond • Warrenton • Williamsburg

Forbes America's

Best Tax & Accounting Firm 2023 Accounting Today

Top 100 Firm & Regional Leader 2024 Accounting Today

National Leader in Tax Specialty 2024 USA Today & Statista R

America's Most Recommended TAX AND ACCOUNTING FIRMS

